Seventh Semester B.E. Degree Examination, Dec.2016/Jan.2017 **Micro and Nano Fluidics**

Max. Marks: 100 Time: 3 hrs.

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

			14	+ha	molecular
		Describe the molecular model for gas and explain the relations	between	uic	morccurar
1	9	Describe the molecular model for gas and explain are			
I	а.	Describe and interest and in Course			(10 Marks)
		behaviour and the macroscopic properties of gases.			(101
		henguing and the illactoscopic properties of Seeses.			'11 Cl

b. Explain the heat transfer analysis of i) Microscale Couette flow; ii) Micro-Poiseuille flows.

(10 Marks)

(10 Marks) Explain in detail about the electric double layer effect. 2 (10 Marks)

Explain the concept of electrophoresis in mirco scale liquid flow. b.

Explain concepts of surface and interfacial energies and tensions in micro fluids. (10 Marks)

(10 Marks) Derive the Young-Laplace equation of capillarity.

Describe the stability of equilibrium solutions in microscale. (10 Marks)

(10 Marks) Explain in detail the kinetics of capillary and confined flows.

PART - B

- Explain about stabilization of nanofluids with enhancement techniques. (10 Marks) 5
 - Discuss about one step method to synthesize nanofluids and state its advantage and (10 Marks) disadvantage.
- Write a note on electrophoresis of individual nanotubuler in micro fluidic channels.

(10 Marks)

- (10 Marks) Explain about polymer transport.
- Explain about nanofluids with carbon nanotubes. Name few surfactants which are used with CNT and its properties. (04 Marks)
 - b. Discuss about waste heat collectors.
 - (06 Marks) Explain the phenomenon of critical heat flux.
- (10 Marks) Discuss about nanofluids in medical applications. (10 Marks)
 - Explain briefly optical and magnetic properties of nanofluids.